Implementing Advanced Inpatient EMR Systems:
Hitting the Quality and Safety Bullseye

Jeremy Theal MD FRCPC
Director, Medical Informatics
eHealth Summit June 16, 2011
Defining the Target

• eHealth solutions are expensive:
 – 2007: $4.8B Canada-wide, $2.4B hospitals alone
 Industry Canada, eHealth Market Environment for Canadian Firms, 2009

• Without clear goals, failure is inevitable:
 – eHealth Ontario scandal 2009
 – $1B in taxpayer funds “wasted” due to “lack of strategic direction”
 CBC News, Oct 7, 2009
Automation

- Legibility
- Ubiquitous access
- Efficiency (cost, time)

HOWEVER:

<table>
<thead>
<tr>
<th>Venue</th>
<th>Annual Savings: Efficiency</th>
<th>Annual Savings: Evidence-Based Care, CDS</th>
<th>Total Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambulatory</td>
<td>$1.6 B (15%)</td>
<td>$9 B (85%)</td>
<td>$10.6 B</td>
</tr>
<tr>
<td>Inpatient</td>
<td>$8.3 B (26%)</td>
<td>$22.9 B (74%)</td>
<td>$31.2 B</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$9.9 B (24%)</td>
<td>$31.9 B (76%)</td>
<td>$41.8 B</td>
</tr>
</tbody>
</table>

Reduced length of stay, improved utilization of investigations/drugs

Hillestad et al, Health Affairs 2005
Evidence

- Finish medical school and residency knowing everything
- Read and retain 2 articles every single night
- At the end of 1 year: **1,225 years behind**

Standardizing care on evidence → positive patient outcomes:
- 40% rel. risk reduction in death from pneumonia
 (22,000 patient study)

Hauck et al, Ann Epidemiol 2004; 14: 669-675
Evidence

- **“Pull model”**: almost 0% success rate
- **“Push model”**: 75% success rate

<table>
<thead>
<tr>
<th>Predictor of Success</th>
<th>Adjusted OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer-based generation of decision support</td>
<td>6.3</td>
</tr>
<tr>
<td>Provision of recommendation rather than just an assessment</td>
<td>7.1</td>
</tr>
<tr>
<td>Provision of decision support at the time and location of decision-making</td>
<td>15.4</td>
</tr>
<tr>
<td>Automatic provision of decision support as part of workflow</td>
<td>112.1</td>
</tr>
</tbody>
</table>

Kawamoto K et al. Systematic review of clinical decision support system success factors. BMJ 2005
Stages of Inpatient EMR Development are Relevant to Patient Outcomes

2006 HIMSS EMR Sophistication Correlates to Hospital Quality Data
Advanced clinical decision support: Saves lives, reduces complications and cost

- Single-hospital study – sepsis order set:
 - Length of stay reduced by 6.3 days (p=0.02)
 - **15.5% absolute mortality reduction (p<0.01)**

- 41-hospital study of Texas-based hospitals:
 - $538 saved per patient with clinical decision support
 ($132 saved per patient with CPOE alone)
 - **Significant 21% mortality reduction with clinical decision support (no sig. change with CPOE alone)**

“If You Build It…”
Adoption of Advanced EMR Systems

• “Up to 30% (of CPOE implementations) fail”
 National Health Information Network Co-ordinator David Brailer, Washington Post, 2005

• Why?
 – CPOE dramatically changes clinician workflows
 – CPOE magnifies existing workflow, policy and procedure issues

• 2002: Cedars Sinai Medical Center:
 – Physician dissatisfaction → proprietary $34 million CPOE system scrapped

• UK NHS NPfIT project:
 – £2.3B over 3 years → £12.4B over 10 years
 – “One size will not necessarily fit all… forcing a single solution (with no local tailoring) onto busy clinicians will not work…”
 Brennan, S. 2009
“If You Build It…”
Adoption of Advanced EMR Systems

• **New South Wales, Australia:**
 – Large scale public healthcare advanced EMR deployment failed
 – “**Poor clinician adoption**”:
 – System designed centrally, for decentralized deployment
 – Front-line clinicians had little input into project plan, system design
 – “**Poor fit with clinical workflows**”
 – **Lessons learned:**
 – Importance of **clinician champions** at each local site
 – Local customization of EMR solutions “*One size does not fit all***”
 – **Integration** of system design into local clinical workflows

Southon FCG et al. JAMIA 1997; 4: 112-124
Clinical Integration

CPOE: “Strapping a new solution onto an old broken process can spell disaster!”
Clinical Integration

CPOE implementation is a _key chance_ to integrate best practice into new clinical workflows

- **A) Integration of Professions** ("the best care is provided by teams"):
 - Interprofessional approach to system/content design

- **B) Integration of Evidence:**
 - Order sets (don’t just “convert” what was on paper)
 - Clinical decision support _built into clinician workflow_
 - Organizational culture

- **C) Integration of the System into Workflows:**
 - Usability testing and workflow mapping
 - Policies, procedures and personnel
The Bullseye: Improving Patient Outcomes, Meeting Challenges

Canadian Adverse Events Study
7.5% of acute care admissions
9,250 – 23,750 preventable deaths/year

Time for newly published evidence to reach care at the bedside:
17 years

Aging population
LIMITED HEALTHCARE FUNDING

SEPSIS
VTE
Community teaching hospital affiliated with the University of Toronto

Catchment area: 400,000

Three Sites:
General, Branson, Seniors’ Health

Beds: 413 acute care
200 long-term care

Volume per year:
110,000 ED visits • 28,000 inpatients
What is eCare?

Advanced Electronic Medical Record (EMR) + Standardization on Evidence-Based Care + Safe Prescribing and Medication Administration + Clinical Decision Support (Rules, Alerts)
Phase 2 System Components:

• Computerized Provider Order Entry (CPOE)
• Evidence-Based Order Sets & Clinical Workflows
• Closed-Loop Medication Administration
• Medication Reconciliation
• Clinical Decision Support
The NYGH eCare Project is unique in Canada:

- First Canadian deployment of CPOE with regularly-updated evidence-based order set content integrated into the physician decision-making workflow.
- First Canadian medium to large size hospital with closed-loop barcode medication administration.
- First HIMSS Stage 6 community teaching hospital in Canada (only 3 hospitals in Canada overall).
Goals and Success Factors

GOALS:
• 100% clinician adoption
• Embrace culture of evidence-based care, best practices
• Improved patient outcomes: quality and safety of care

SUCCESS FACTORS:
1. Vision – improve quality and safety of patient care
2. Engagement of front-line clinicians
3. Clinical Integration: Professions, Evidence, Workflows
Vision - Senior Leadership Team

- Nurtured organizational culture that welcomes change
- Focused organization on goal of improved quality and safety of patient care using technology
- Clinical champions identified and hired to core roles Positioned the project: “by clinicians, for clinicians”
- Prioritized eCare project and allocated adequate financial resources, despite funding challenges
- Visible and supportive during implementation, go-live
Be an eCare Super Hero

and help reduce the rate of medication admin errors by 40%*

North York General Hospital

Be an eCare Super Hero

and help save 21% of inpatients lives at risk from pneumonia*

Dr. David Benoit, NYGH Physician

NYGH EHR users have seen decreases in medication errors and improved patient care.

North York General Hospital

zyxhealth
3 main project foci:
- Medication Integration
- CPOE/Order Sets and Physicians
- Interprofessional Integration

Each focus led by:
- Clinician Champion
- Executive Sponsor

Foci integrated by:
- Steering Committee
- Core Committee
Integrating Professions: Interprofessional Order Set Development

1. Order Set Prototyping (central build team)
2. Order Set Interprofessional Review: Nursing, Allied Health, Lab, Radiology, Medical Imaging
3. Order Set MD Review: online, one-on-one, group sessions
4. Comment review and consolidation, evidence updates, consensus meetings
5. Order Set Final Approval (MAC - monthly)
Integrating Evidence: Pneumonia Evidence-Based Order Set
Integrating Workflows:
Mobilizing Evidence with Systems, Policy and Personnel

• Re-engineer care processes to integrate evidence from order sets:
 • Stroke: bedside swallowing assessment
 • Prevention of VTE
 • Prevention of IV contrast-induced nephropathy/renal failure
 • Acute and chronic pain management
 • Therapeutic drug monitoring (aminoglycosides, digoxin)
 • Health promotion (smoking cessation, vaccinations)

• **Clinician portal**: repository for evidence-based resources
Integrating Evidence into Workflow: Clinical Decision Support

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No intervention – no VTE protocol</td>
<td>10-40%</td>
</tr>
<tr>
<td>Simple-to-follow VTE protocol, paper (3-level risk stratification, not score-based)</td>
<td>50%</td>
</tr>
<tr>
<td>Standardized, evidence-based VTE order module, embedded into CPOE order sets</td>
<td>65-85%</td>
</tr>
</tbody>
</table>
| Real-time electronic clinical decision support | 95%+

Dr. Greg Maynard, Director, Center for Improvement Science, UCSD
VTE Prophylaxis for Hip Fracture at NYGH

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Percentage of patients with appropriate VTE prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 (Geerts et al)</td>
<td>70%</td>
</tr>
<tr>
<td>2010 (pre-CPOE)</td>
<td>83%</td>
</tr>
<tr>
<td>2011 (post-CPOE)</td>
<td>95%</td>
</tr>
</tbody>
</table>

↑ 36% *p=0.0259

Percentage of patients with appropriate VTE prophylaxis for hip fracture at NYGH shows an increase from 2007 (70%) to 2011 (95%) with a statistically significant improvement (*p=0.0259) following CPOE implementation.
Outcomes to Date: Since “Go-Live” October, 2010

• User adoption of the system – **100%**
• Percentage of physician orders entered by MD’s – **95%**
• Number of orders entered by physicians - > **872,000**
• Evidence-based PowerPlans activated - > **42,000**
• Percentage orders from evidence-based PowerPlans: **39%**
• Medication-patient mismatch errors averted - > **715**
• Medication reconciliation on discharge – ↑**425%**
• Measurement of other outcomes underway
Outcomes: Hospital Standardized Mortality Ratio (HSMR)

\[
\text{HSMR} = \frac{\text{Actual # of inpatient deaths}}{\text{Average expected # of deaths}}
\]

(adjusted for age, sex, diagnosis and comorbidities)

• Tracked over time, HSMR can be a **motivator for change** by indicating how successful hospitals have been in reducing inpatient deaths, and improved patient care

• **Canadian Institute for Health Information** (CIHI) compiles HSMR results for eligible facilities and health regions in all provinces outside Quebec

• HSMR data are published in local and national media for public review
Dr. Jeremy Theal | eHealth Summit 2011 | Hitting the Quality and Safety Bullseye

Preliminary Outcomes: Hospital Standardized Mortality Ratio (HSMR)

Prelim. analysis of monthly data pre and post-CPOE:

Cancer care: $P = 0.155$ (95% CI -20.27 to 106.97)

Surgery: $P = 0.103$ (95% CI -10.14 to 90.18)

Medicine: $P = 0.029$ (95% CI 2.69 to 38.85)
AUTOMATION
EVIDENCE
ADVANCED SYSTEMS
ADOPTION
INTEGRATION
PATIENT OUTCOMES
Thank You